Как поступить
в Онлайн-школу и получить аттестат?

Подробно расскажем о том, как перевестись на дистанционный формат обучения, как устроены онлайн-уроки и учебный процесс, как улучшить успеваемость и повысить мотивацию!

Нажимая на кнопку, я соглашаюсь на обработку персональных данных

Конспект урока: Сравнение отрезков и углов

Общие геометрические сведения

08.10.2024
2103
0

Равенство геометрических фигур. Сравнение отрезков и углов

План урока

  • Равенство геометрических фигур;
  • Сравнение отрезков;
  • Сравнение углов.

Цели урока

  • Знать определение равных фигур;
  • Знать определение середины отрезка;
  • Знать определение биссектрисы угла;
  • Уметь сравнивать отрезки и углы.

Разминка

  • По каким признакам можно сравнивать предметы?
  • Назовите предметы из окружающего нас мира, имеющие одинаковую форму и одинаковые размеры.

Равенство геометрических фигур

Рис. 1. Предметы одинаковой формы и размеров

В окружающем нас мире часто встречаются предметы, имеющие одинаковую форму и одинаковые размеры (рис. 1). 

 

Вообще, сравнивать предметы можно по форме, по цвету, по длине, по высоте, по весу и по другим признакам.

 

В геометрии при сравнении фигур учитывают форму и размеры. Две фигуры, имеющие одинаковую форму и одинаковые размеры, называют равными фигурами.

Рис. 2. Тетрадные листы

Чтобы установить равенство фигур, их можно наложить друг на друга. 

 

Посмотрите на страницы в книге, на листы в тетради — это примеры равных фигур, и равенство их видим при наложении одного предмета на другой. Если нет возможности наложить одну геометрическую фигуру на другую, то можно воспользоваться калькой (это полупрозрачная бумага) или прозрачной плёнкой. На кальку копируется одна из фигур, а затем эту копию накладываем на другую фигуру, пытаясь их совместить.


Две геометрические фигуры называются равными, если при наложении их можно полностью совместить.


Рис. 3. СD = МК

Отрезки можно сравнивать с помощью наложения. При этом, сначала надо конец одного отрезка совместить с концом второго, если два других конца у отрезков совместятся, значит отрезки равны. 

 

Рассмотрим отрезки CD и MK на рисунке 3. 

 

Если совместим точки C и M, то при наложении отрезков точки D и K совместятся. Отрезки CD и MK равны, пишут CD=MK.

Рис. 4. АВ < РН

Рассмотрим отрезки AB и PH на рисунке 4.  

 

Если совместим точки A и P, то точки B и H не совместятся. 

 

Отрезок AB составляет часть отрезка PH, отрезок AB меньше отрезка PH. Пишут AB<PH.


Точка, лежащая на отрезке и делящая его на две равные части, называется серединой отрезка.


Рис. 5. Равные отрезки

На рисунке 5 KS=SP, точка S - середина отрезка KP.                           


Пример 1

 

Точка C — середина отрезка AB, точка M лежит на отрезке AC. Расположите отрезки MCAB и CB в порядке возрастания.

 


Решение

 

Если C — середина отрезка AB, то AC=CB, причём CB<AB

Если MAC, то MC<AC, значит, МС<СВ.

Получили, что МС<СВ<АВ

 

Ответ: MCCBAB.


Упражнение 1

 

Рис. 6. Упражнение 1

На рисунке 6 отрезки MKKTTLLP и PN равны.

 

  1. Сравните отрезки MT и TP.
  2. Сравните отрезки MT и LN.
  3. Назовите середину отрезка MP.
  4. Назовите отрезки, серединой которых является точка L.


Сравнение углов


Рис. 7. ∠МОК > ∠АВС

С помощью наложения можно сравнивать и углы. 

 

Рассмотрим ABC и MOK (рис. 7). 

 

Совместим вершины этих углов (точки B и O).

 

Совместим стороны BC и OK, причём BA и OM должны оказаться по одну сторону от совместившихся сторон BC и OK. Если эти стороны не совместятся, то один угол будет составлять часть другого.  Выполняя совмещение, увидим, что MOK составляет часть ABC. Значит, MOK<ABC.

 

Если при совмещении углы полностью совместятся, то они равны.

 

Развёрнутый угол больше любого неразвёрнутого угла.  

 

Любые два развернутых угла равны.


Луч, который выходит из вершины угла и делит его на два равных угла, называется биссектрисой угла.


Пример 2

 

На каком рисунке (8 или 9) луч CK является биссектрисой угла?

Рис. 8, 9. Пример 2


Решение

 

  1. На рисунке 8 луч CK не является биссектрисой ACB, т. к. он не делит этот угол на два равных угла.
  2. На рисунке 9 луч CK является биссектрисой ACB, т. к. он выходит из вершины данного угла и делит его на два равных угла.

 

Ответ: на рисунке 9.


Контрольные вопросы

 

1. Объясните, какие геометрические фигуры называются равными.

2. Придумайте и нарисуйте на листе бумаги две равные фигуры. Затем вырежьте одну из них и проверьте наложением их равенство. 

3. Если первый отрезок является частью второго, то первый отрезок будет … второго.

4. Если второй угол является частью первого угла, то первый угол будет … второго.

5. Что такое середина отрезка?

6. Что такое биссектриса угла?


Ответы

Упражнение 1

 

  1. MT=TP.
  2. MT=LN.
  3. Точка T.
  4. TP и KN.

 

Контрольные вопросы

 

  1. «меньше».
  2. «больше».

Предыдущий урок
Луч и угол
Общие геометрические сведения
Следующий урок
Измерение углов
Общие геометрические сведения
Урок подготовил(а)
teacher
Валерия Александровна
Учитель математики
Опыт работы: более 20 лет
Поделиться:
  • О простых и составных числах

    Алгебра

  • Сословия в XVII в.: верхи общества. Сословия в XVII в.: низы общества

    История

  • Преобразование целого выражения в многочлен

    Алгебра

Зарегистрируйся, чтобы присоединиться к обсуждению урока

Добавьте свой отзыв об уроке, войдя на платфому или зарегистрировавшись.

Отзывы об уроке:
Пока никто не оставил отзыв об этом уроке