Как поступить
в Онлайн-школу и получить аттестат?

Подробно расскажем о том, как перевестись на дистанционный формат обучения, как устроены онлайн-уроки и учебный процесс, как улучшить успеваемость и повысить мотивацию!

Нажимая на кнопку, я соглашаюсь на обработку персональных данных

Конспект урока: Обратимость химических реакций. Химическое равновесие и способы его смещения

Химические взаимодействия

30.03.2025
2281
0

Обратимость химических реакций. Химическое равновесие и способы его смещения

План урока

  • Необратимость реакции
  • Обратимость реакции
  • Химическое равновесие
  • Принцип Ле Шателье

Цели урока

  • иметь представление о процессе обратимости
  • уметь составлять обратимые и необратимые реакции
  • знать способы смещения равновесия
  • уметь применять способы смещения равновесия для химических процессов

 

Введение

Вы уже знаете, что химия изучает не только свойства веществ, но и их превращения, а также стремится использовать такие процессы для получения соединений с новыми, полезными для человека свойствами. Имеются достаточно большие группы реакций, одни из которых не сопровождаются изменением состава вещества, а другие протекают с изменением состава вещества. Последняя группа химических реакций тоже делится по различным признакам: изменению числа, состава реагентов и продуктов реакции; выделению или поглощению теплоты; изменению степеней окисления атомов, образующих вещества; использованию катализатора; агрегатному состоянию веществ; направлению процесса. Если рассматривать последнюю характеристику, то направление реакции может быть как прямым, так и обратным. Соответственно, и реакции могут быть как обратимыми, так и необратимыми.

Необратимость реакции

Вы уже знаете, что существуют химические реакции, которые протекают только в одном направлении — в сторону образования продуктов реакции. Такие реакции называются необратимыми.


Необратимая реакция — это определённая химическая реакция, которая идёт до конца в одном конкретном направлении.


В этих реакциях исходные вещества (реагенты) практически полностью превращаются в стехиометрическом соотношении в продукты. Необратимости реакции способствуют условия, при которых хотя бы один из продуктов взаимодействия уходит из реакционной зоны в виде осадка или газообразного вещества или представляет собой малодиссоциирующее в реакционной среде вещество.

 

Рассмотрим пример необратимой реакции.


Пример 1

 

Записать уравнение реакции взаимодействия между нитратом серебра и хлоридом натрия.


Решение

 

1. Составить схему взаимодействия между нитратом серебра и хлоридом натрия. Расставить коэффициенты (при необходимости) и отметить растворимость веществ:  

 

AgNO3+NaCl  AgCl+NaNO3.

 Н                 P                 Н                     Р

Реакция протекает с выпадением осадка, значит относится к необратимым

 

2. Записать реакцию в полном ионном виде:

 

Ag+ + NO3-+ Cl- + Na+ AgCl  + NO3- + Na+. 

 

3. Записать сокращённое ионное уравнение: 

 

Ag+ + Cl-  AgCl.

 

Необратимую реакцию нельзя повернуть в обратную сторону без ввода новых реагентов и без затраты энергии.


Аналогично можно рассмотреть и электролитическую диссоциацию. Так, сильные электролиты диссоциируют необратимо:

 

КОН  К+ + ОН-.

 

Эту особенность отражают с помощью стрелок. При необратимом процессе используется одна стрелка, указывающая вправо, а при обратимых — две стрелки, направленные в противоположные стороны. Таким образом, стрелка, указывающая слева направо, отражает процесс диссоциации, а в обратном направлении — ассоциации.

 

Если сильные электролиты участвуют в необратимом процессе, то слабые, в свою очередь, — в обратимом:

 

HOOCCH3  Н+ + CH3 CОО-.

Обратимость реакции

Существует множество реакций, которые протекают не до полного превращения реагентов в продукты, то есть взаимодействие как бы прекращается на определённом этапе. При этом в реакционной смеси обнаруживаются как продукты реакции, так и исходные вещества. На самом деле процесс не прекращается, только с определённого момента продукты реакции начинают взаимодействовать и выделять исходные вещества, а, значит, начинает протекать обратная реакция. Такие реакции называются обратимыми.


Обратимыми называются реакции, которые при данных условиях одновременно протекают в двух взаимно противоположных направлениях.


Рассмотрим пример обратимой реакции.


Пример 2

 

Записать уравнение реакции образования оксида азота (II) из простых веществ.


Решение

 

1. Запишем схему реакции между азотом и кислородом: 

 

N20 + О20   N+2О-2.

 

2. Запишем окислительно-восстановительный процесс этой реакции:

 

N20 - 2×2ē   2N+2     4            1           восстановитель,

                                                            4

О20 + 2×2ē  2О-2       4            1           окислитель.

 

3. Расставим коэффициенты: N20 + О20  2NO.

 

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция.


Обратимые реакции могут протекать одновременно в двух противоположных направлениях и не заканчиваются полным расходованием всех либо одного из исходных веществ, поэтому вместо знака равенства «=» или «=>» в уравнениях таких реакций ставится знак обратимости «⇆» или «↔».


Упражнение 1

 

Обратимой или необратимой является реакция взаимодействия C2H5OH + O2? Почему? Запишите уравнение реакции.


Химическое равновесие

Скорость химической реакции прямо пропорционально зависит от концентрации исходных веществ: чем выше (больше) концентрация веществ, тем больше скорость реакции и наоборот, чем ниже концентрация веществ, тем меньше скорость реакции.

 

Так, в обратимых реакциях в результате протекания прямой реакции в системе появляются и начинают накапливаться конечные продукты реакции, которые по мере накопления начинают вступать в противоположную по направлению (обратную) реакцию, идущую справа налево. Следовательно, в соответствии с законом действующих масс в реакционной системе скорость прямой реакции постепенно уменьшается, а скорость обратной реакции увеличивается.

 

В результате через какое-то время эти скорости станут равными, и установится состояние, именуемое химическим равновесием.


Химическим равновесием называют такое состояние системы, при котором скорость прямой реакции равна скорости обратной реакции.


При этом концентрации реагирующих веществ и про­дуктов реакции остаются без изменения. Их называют рав­новесными концентрациями. На макроуровне ка­жется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы про­должают идти, но с равной скоростью. 

 

Поэтому такое равновесие в системе называют подвижным и динамическим.

Принцип Ле Шателье (смещение химического равновесия)

Так как химическое равновесие является подвижным, то при изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что приведет к смещению (сдвигу) равновесия.

Рис. 1. Анри Луи Ле Шателье (1850—1936), автор неизвестен Рис. 1. Анри Луи Ле Шателье (1850—1936), автор неизвестен

Направление смещения равновесия определяется принципом, который был сформулирован французским учёным Ле Шателье в 1884 году.

 

Если на равновесную систему оказывается внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

 

Этот принцип часто называют принципом «бегства от насилия» или принципом «наоборот». Принцип Ле Шателье применим не только к хи­мическим реакциям, но и ко многим другим про­цессам: к испарению, конденсации, плавлению, кри­сталлизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и рас­чёты, вытекающие из закона действующих масс, дают возможность находить такие условия для про­ведения химических процессов, которые обеспечи­вают максимальный выход желаемого вещества.

Важнейшими внешними факторами, которые могут приводить к смещению химического равновесия, являются: концентрация веществ, температура и давление.

Выделим основные закономерности:

  • при увеличении концентрации реагирующих ве­ществ химическое равновесие системы смещает­ся в сторону образования продуктов реакции;
  • при увеличении концентрации продуктов реак­ции химическое равновесие системы смещается в сторону образования исходных веществ;
  • при увеличении давления химическое равнове­сие системы смещается в сторону той реакции, при которой объём образующихся газообразных веществ меньше;
  • при понижении давления – наоборот, в сторону большего объёма газообразных веществ;
  • при повышении температуры химическое рав­новесие системы смещается в сторону эндотер­мической реакции;
  • при понижении температуры — в сторону экзо­термического процесса.

 

Рассмотрим пример реакции образования аммиака. 


Пример 3

 

Запишите уравнение реакции образования аммиака из водорода и азота. Укажите условие, способствующее повышению количества образующегося аммиака. 


Решение

 

Давайте рассмотрим, как идёт процесс образования аммиака.

 

1. Запишем схему реакции. Уравняем её и установим, обратимая реакция или же необратимая.

 

N2 + 3H2  2NH3

 

Оба вещества газообразные, не происходит образования осадка или воды, соответственно, реакция обратимая.

 

2. Задача: увеличить выход продукта реакции. 

 

3. Решение: необходимо повышать давление в системе обратимой реакции, так как при протекании прямой реакции число газообразных молекул уменьшается (из четырёх молекул газов азота и водорода образуются две молекулы газа аммиака).


Упражнение 2

 

В примере 3 указан один из способов повышения выхода продукта реакции N2 + 3H2  2NH3 + Q. Запишите остальные способы смещения равновесия в сторону продуктов реакции.


Контрольные вопросы

 

1. Что заключается в понятии «скорость химической реакции»?

2. Что обозначают понятия «экзотермический и эндотермический процесс»?

3. Почему в необратимых реакциях нельзя сместить равновесие путём увеличения давления?


Ответы

 

Упражнение 1

 

Реакция C2H5OH + 3O2  2CO2 + 3H2O необратимая, т. к. в ней выделяется углекислый газ и вода, которые удаляются из системы.

 

Упражнение 2

 

1. Чтобы сместить равновесие вправо в реакции синтеза аммиака 

 

N2 + 3H2  2NH3, т. е. увеличить выход аммиака, необходимо: 

 

1) повысить концентрацию N2 и Н2;

2) понизить концентрацию 3 (отводить продукт из сферы реакции);

3) понизить температуру, т. к. прямая реакция экзотермическая.


Обратимость химических реакций. Химическое равновесие и способы его смещения

План урока

  • Необратимость реакции
  • Обратимость реакции
  • Химическое равновесие
  • Принцип Ле Шателье

Цели урока

  • иметь представление о процессе обратимости
  • уметь составлять обратимые и необратимые реакции
  • знать способы смещения равновесия
  • уметь применять способы смещения равновесия для химических процессов

 

Введение

Вы уже знаете, что химия изучает не только свойства веществ, но и их превращения, а также стремится использовать такие процессы для получения соединений с новыми, полезными для человека свойствами. Имеются достаточно большие группы реакций, одни из которых не сопровождаются изменением состава вещества, а другие протекают с изменением состава вещества. Последняя группа химических реакций тоже делится по различным признакам: изменению числа, состава реагентов и продуктов реакции; выделению или поглощению теплоты; изменению степеней окисления атомов, образующих вещества; использованию катализатора; агрегатному состоянию веществ; направлению процесса. Если рассматривать последнюю характеристику, то направление реакции может быть как прямым, так и обратным. Соответственно, и реакции могут быть как обратимыми, так и необратимыми.

Необратимость реакции

Вы уже знаете, что существуют химические реакции, которые протекают только в одном направлении — в сторону образования продуктов реакции. Такие реакции называются необратимыми.


Необратимая реакция — это определённая химическая реакция, которая идёт до конца в одном конкретном направлении.


В этих реакциях исходные вещества (реагенты) практически полностью превращаются в стехиометрическом соотношении в продукты. Необратимости реакции способствуют условия, при которых хотя бы один из продуктов взаимодействия уходит из реакционной зоны в виде осадка или газообразного вещества или представляет собой малодиссоциирующее в реакционной среде вещество.

 

Рассмотрим пример необратимой реакции.


Пример 1

 

Записать уравнение реакции взаимодействия между нитратом серебра и хлоридом натрия.


Решение

 

1. Составить схему взаимодействия между нитратом серебра и хлоридом натрия. Расставить коэффициенты (при необходимости) и отметить растворимость веществ:  

 

AgNO3+NaCl  AgCl+NaNO3.

 Н                 P                 Н                     Р

Реакция протекает с выпадением осадка, значит относится к необратимым

 

2. Записать реакцию в полном ионном виде:

 

Ag+ + NO3-+ Cl- + Na+ AgCl  + NO3- + Na+. 

 

3. Записать сокращённое ионное уравнение: 

 

Ag+ + Cl-  AgCl.

 

Необратимую реакцию нельзя повернуть в обратную сторону без ввода новых реагентов и без затраты энергии.


Аналогично можно рассмотреть и электролитическую диссоциацию. Так, сильные электролиты диссоциируют необратимо:

 

КОН  К+ + ОН-.

 

Эту особенность отражают с помощью стрелок. При необратимом процессе используется одна стрелка, указывающая вправо, а при обратимых — две стрелки, направленные в противоположные стороны. Таким образом, стрелка, указывающая слева направо, отражает процесс диссоциации, а в обратном направлении — ассоциации.

 

Если сильные электролиты участвуют в необратимом процессе, то слабые, в свою очередь, — в обратимом:

 

HOOCCH3  Н+ + CH3 CОО-.

Обратимость реакции

Существует множество реакций, которые протекают не до полного превращения реагентов в продукты, то есть взаимодействие как бы прекращается на определённом этапе. При этом в реакционной смеси обнаруживаются как продукты реакции, так и исходные вещества. На самом деле процесс не прекращается, только с определённого момента продукты реакции начинают взаимодействовать и выделять исходные вещества, а, значит, начинает протекать обратная реакция. Такие реакции называются обратимыми.


Обратимыми называются реакции, которые при данных условиях одновременно протекают в двух взаимно противоположных направлениях.


Рассмотрим пример обратимой реакции.


Пример 2

 

Записать уравнение реакции образования оксида азота (II) из простых веществ.


Решение

 

1. Запишем схему реакции между азотом и кислородом: 

 

N20 + О20   N+2О-2.

 

2. Запишем окислительно-восстановительный процесс этой реакции:

 

N20 - 2×2ē   2N+2     4            1           восстановитель,

                                                            4

О20 + 2×2ē  2О-2       4            1           окислитель.

 

3. Расставим коэффициенты: N20 + О20  2NO.

 

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция.


Обратимые реакции могут протекать одновременно в двух противоположных направлениях и не заканчиваются полным расходованием всех либо одного из исходных веществ, поэтому вместо знака равенства «=» или «=>» в уравнениях таких реакций ставится знак обратимости «⇆» или «↔».


Упражнение 1

 

Обратимой или необратимой является реакция взаимодействия C2H5OH + O2? Почему? Запишите уравнение реакции.


Химическое равновесие

Скорость химической реакции прямо пропорционально зависит от концентрации исходных веществ: чем выше (больше) концентрация веществ, тем больше скорость реакции и наоборот, чем ниже концентрация веществ, тем меньше скорость реакции.

 

Так, в обратимых реакциях в результате протекания прямой реакции в системе появляются и начинают накапливаться конечные продукты реакции, которые по мере накопления начинают вступать в противоположную по направлению (обратную) реакцию, идущую справа налево. Следовательно, в соответствии с законом действующих масс в реакционной системе скорость прямой реакции постепенно уменьшается, а скорость обратной реакции увеличивается.

 

В результате через какое-то время эти скорости станут равными, и установится состояние, именуемое химическим равновесием.


Химическим равновесием называют такое состояние системы, при котором скорость прямой реакции равна скорости обратной реакции.


При этом концентрации реагирующих веществ и про­дуктов реакции остаются без изменения. Их называют рав­новесными концентрациями. На макроуровне ка­жется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы про­должают идти, но с равной скоростью. 

 

Поэтому такое равновесие в системе называют подвижным и динамическим.

Принцип Ле Шателье (смещение химического равновесия)

Так как химическое равновесие является подвижным, то при изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что приведет к смещению (сдвигу) равновесия.

Рис. 1. Анри Луи Ле Шателье (1850—1936), автор неизвестен Рис. 1. Анри Луи Ле Шателье (1850—1936), автор неизвестен

Направление смещения равновесия определяется принципом, который был сформулирован французским учёным Ле Шателье в 1884 году.

 

Если на равновесную систему оказывается внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

 

Этот принцип часто называют принципом «бегства от насилия» или принципом «наоборот». Принцип Ле Шателье применим не только к хи­мическим реакциям, но и ко многим другим про­цессам: к испарению, конденсации, плавлению, кри­сталлизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и рас­чёты, вытекающие из закона действующих масс, дают возможность находить такие условия для про­ведения химических процессов, которые обеспечи­вают максимальный выход желаемого вещества.

Важнейшими внешними факторами, которые могут приводить к смещению химического равновесия, являются: концентрация веществ, температура и давление.

Выделим основные закономерности:

  • при увеличении концентрации реагирующих ве­ществ химическое равновесие системы смещает­ся в сторону образования продуктов реакции;
  • при увеличении концентрации продуктов реак­ции химическое равновесие системы смещается в сторону образования исходных веществ;
  • при увеличении давления химическое равнове­сие системы смещается в сторону той реакции, при которой объём образующихся газообразных веществ меньше;
  • при понижении давления – наоборот, в сторону большего объёма газообразных веществ;
  • при повышении температуры химическое рав­новесие системы смещается в сторону эндотер­мической реакции;
  • при понижении температуры — в сторону экзо­термического процесса.

 

Рассмотрим пример реакции образования аммиака. 


Пример 3

 

Запишите уравнение реакции образования аммиака из водорода и азота. Укажите условие, способствующее повышению количества образующегося аммиака. 


Решение

 

Давайте рассмотрим, как идёт процесс образования аммиака.

 

1. Запишем схему реакции. Уравняем её и установим, обратимая реакция или же необратимая.

 

N2 + 3H2  2NH3

 

Оба вещества газообразные, не происходит образования осадка или воды, соответственно, реакция обратимая.

 

2. Задача: увеличить выход продукта реакции. 

 

3. Решение: необходимо повышать давление в системе обратимой реакции, так как при протекании прямой реакции число газообразных молекул уменьшается (из четырёх молекул газов азота и водорода образуются две молекулы газа аммиака).


Упражнение 2

 

В примере 3 указан один из способов повышения выхода продукта реакции N2 + 3H2  2NH3 + Q. Запишите остальные способы смещения равновесия в сторону продуктов реакции.


Контрольные вопросы

 

1. Что заключается в понятии «скорость химической реакции»?

2. Что обозначают понятия «экзотермический и эндотермический процесс»?

3. Почему в необратимых реакциях нельзя сместить равновесие путём увеличения давления?


Ответы

 

Упражнение 1

 

Реакция C2H5OH + 3O2  2CO2 + 3H2O необратимая, т. к. в ней выделяется углекислый газ и вода, которые удаляются из системы.

 

Упражнение 2

 

1. Чтобы сместить равновесие вправо в реакции синтеза аммиака 

 

N2 + 3H2  2NH3, т. е. увеличить выход аммиака, необходимо: 

 

1) повысить концентрацию N2 и Н2;

2) понизить концентрацию 3 (отводить продукт из сферы реакции);

3) понизить температуру, т. к. прямая реакция экзотермическая.


Предыдущий урок
Обратимость химических реакций. Химическое равновесие и способы его смещения
Химические взаимодействия
Следующий урок
Электролиз расплавов и растворов. Практическое применение электролиза
Теория электролитической диссоциации
Урок подготовил(а)
Дмитрий Алексеевич
Дмитрий Алексеевич
Учитель химии
Опыт работы: 10 лет
  • Sport

    Английский язык

  • Пропорциональные отрезки в прямоугольном треугольнике

    Геометрия

  • Решение текстовых задач в три действия.

    Математика

Зарегистрируйся, чтобы присоединиться к обсуждению урока

Добавьте свой отзыв об уроке, войдя на платфому или зарегистрировавшись.

Отзывы об уроке:
Пока никто не оставил отзыв об этом уроке