Как поступить
в Онлайн-школу и получить аттестат?

Подробно расскажем о том, как перевестись на дистанционный формат обучения, как устроены онлайн-уроки и учебный процесс, как улучшить успеваемость и повысить мотивацию!

Нажимая на кнопку, я соглашаюсь на обработку персональных данных

Конспект урока: Электромагнитные колебания. Свободные электромагнитные колебания. Процессы при гармонических колебаниях в контуре

Электромагнитные колебания и волны

Свободные электромагнитные колебания

План урока

  • Определение электромагнитных колебаний
  • Колебательный контур
  • Гармонические свободные колебания в контуре
  • Вывод Формулы Томсона для периода электромагнитных колебаний

Цели урока

  • Знать, какие колебания называют электромагнитными
  • Уметь объяснять, как возникают и протекают электромагнитные колебания в колебательном контуре
  • Знать, как связаны амплитуды колебаний заряда и силы тока при гармонических колебаниях
  • Уметь находить период электромагнитных колебаний используя формулу Томсона

Разминка

  • Где, в каких системах могут возникать колебательные процессы?
  • Какие физические величины могут изменяться при колебаниях?
  • Какие величины остаются постоянными?
  • Какие физические величины будут изменяться при электромагнитных колебаниях?

Определение электромагнитных колебаний

 

Колебания могут происходить не только в механических системах, но и в электромагнитных, например, в электрических цепях.


Колебания, при которых энергия электрического поля преобразуется в энергию магнитного поля и обратно, называют электромагнитными колебаниями.

 


Периодические или почти периодические изменения заряда, силы тока и напряжения называются  электромагнитными колебаниями.


Все рассматриваемые электрические цепи будем считать удовлетворяющими условию  квазистационарности. Это означает, что изменения силы тока во всех поперечных сечениях любого неразветвленного участка цепи происходят одновременно и на одинаковую величину. Т.е., в любой момент времени силу тока через каждое такое сечение можно считать одинаковой. Условие квазистационарности можно считать выполненными, если длина lрассматриваемой электрической цепи много меньше с·t, где с — модуль скорости света в вакууме, а t — промежуток времени, в течение которого происходит существенное изменение силы тока. Например, при частоте 50 Гц длина l должна быть существенно меньше 6·103 км. В этом случае можно считать, что изменяющееся с течением времени электрическое поле, которое порождает ток, распространяется по всей цепи практически мгновенно, т.е. существенно быстрее изменений этого поля. 

 

Колебательный контур

 

Свободные электромагнитные колебания происходят в электромагнитной системе только за счет начального запаса энергии. 

Рис. 1. Колебательный контур Рис. 1. Колебательный контур
Рассмотрим пример простейшей электромагнитной колебательной системы - колебательный контур. Он состоит из соединенных в замкнутую цепь конденсатора и катушки индуктивности (рис. 1). 
Чтобы возникли электромагнитные колебания переведем ключ в положение 1 (рис. 1), для зарядки конденсатора. На одной обкладке накопится положительный заряд, на другой отрицательный, между обкладками конденсатора накопится электрическая энергия.  

После этого переведем ключ в положение 2, переключив конденсатор на катушку. В результате образуется колебательный контур с начальным запасом энергии, равным энергии заряженного конденсатора. Если к контуру подсоединить осциллограф, то он покажет, что что в контуре возникают колебания. При этом зависимость напряжения от времени соответствует зависимости, характерной для затухающих колебаний.

 

Затухание колебаний объясняется уменьшением энергии контура с течением времени. это уменьшение обусловлено в основном двумя причинами. Во–первых, при протекании по проводам тока в них, согласно закону Джоуля — Ленца, выделяется определенное количество теплоты. Во-вторых, создаваемые элементами контура электрическое и магнитное поля изменяются с течением времени, что в свою очередь, приводит к излучению электромагнитных волн, которое уносит энергию.

 

Гармонические свободные колебания в контуре

 

Можно создать условия, при которых потери энергии в колебательном контуре будут пренебрежимо малы. Тогда свободные электромагнитные колебания в контуре будут гармоническими. Докажем это, используя энергетический подход.

 

Пусть начальный заряд конденсатора q0. Тогда запас энергии W0 колебательной системы равен начальной энергии конденсатора:

W0=q022C.        (1)

С – емкость конденсатора.

 

Заряженный конденсатор после его подключения к катушке индуктивности начинает разряжаться через образовавшуюся цепь. Поэтому заряд конденсатора, а следовательно, и его энергия будут уменьшаться с течением времени. с другой стороны, при разрядке конденсатора в цепи течет электрический ток. Этот ток создает магнитное поле. Следовательно, энергия магнитного поля станет отличной от нуля.

 

Пусть заряд конденсатора изменяется и к некоторому моменту времени t становится равным q, а сила тока становится равной I. Тогда энергия магнитного поля, созданного током, будет равна:

Wмагн=L·I22.     (2)

L - индуктивность катушки контура.

 

Таким образом, энергия всей системы, складывающаяся из энергий электрического и магнитного полей, в произвольный момент времени t равна:

 

W=Wэл+Wмагн=q22C+L·I22.   (3)

 

Если потери энергии колебательной системы пренебрежимо малы, то ее энергия с течением времени остается неизменной, т.е. W=W0=const. Следовательно:

 

q22C+L·I22=W0.     (4) 

 

Из выражения (4) следует, что по мере уменьшения энергии электрического поля энергия магнитного поля будет увеличиваться, и наоборот.                     


По мере уменьшения заряда q конденсатора (при его разряде) сила тока I в цепи будет нарастать. Наоборот, при уменьшении силы тока I заряд q будет увеличиваться. 


Вывод Формулы Томсона для периода электромагнитных колебаний

 

Выясним, как связаны между собой заряд конденсатора и сила тока в контуре. Рассмотрим достаточно малый промежуток времени Δt, в течение которого силу тока I в контуре можно считать постоянной. За этот промежуток времени Δt заряд одной из пластин конденсатора увеличивается на q=I·t. Соответственно, на такую по модулю величину уменьшается заряд другой пластины. Иначе говоря, изменение заряда Δq за достаточно малое время Δt и сила тока I в контуре связаны соотношением:

I=qt. (5)

 

Поскольку промежуток времени Δt достаточно мал, т.е. стремится к нулю, соотношение (5) может быть записано в виде:

 

I=limt0qt=q˙.(6)

 

Полученный результат означает, что в любой момент времени сила тока в колебательном контуре равна производной по времени заряда пластины конденсатора.

 

Возьмем производные по времени от левой и правой частей уравнения (4). С учетом того, что q(t) и I(t) изменяются с течением времени. получаем:

 

12C·2q·q·+L2·2I·I·=0.  (7)

 

Учитывая, что I=q,· а I·=q··, преобразуем уравнение (7) к виду:

 

q··+1L·C·q=0.   (8)

 

Уравнение (8) представляет собой с точноcтью до обозначений уравнение гармонических колебаний!

 

Циклическая частота этих колебаний ω=1L·C.  

 

Период этих колебаний равен:

 

T=2πω=2π·L·C. (9)

 

Формулу (9) называют формулой Томсона в честь британского физика Уильяма Томсона.

 

Решение уравнения (8) может быть записано в виде:

 

q(t)=qm·cos(ω·t+φ0)=qm·cos(1L·C·t+φ0).   (10)

 

Из уравнений (10) и (6) следует, что зависимость силы тока в контуре от времени имеет вид:

 

I(t)=q·=-qm·ω·sin(ω·t+φ0)=-qmL·C·sin(ω·t+φ0)=

=-Im·sin(ω·t+φ0),

где Im – амплитуда силы тока. (11)

 

Отметим, что если в начальный момент времени t=0 заряд конденсатора был равен q0, а сила тока была равна нулю, то амплитуда колебаний заряда будет равна начальному заряду конденсатора qm=q0, а начальная фаза φ0 в формулах (10) и (11) будет равна нулю.              


Упражнение 1

 

1. Как изменится период свободных гармонических колебаний в контуре при увеличении емкости конденсатора в 4 раза?

2. Как изменится период свободных гармонических колебаний в контуре при уменьшении индуктивности катушки в 3 раз?

3. В начальный момент времени заряд конденсатора колебательного контура был равен q0, а сила тока в контуре была равна нулю. Определите: а) значение заряда пластины, которая при t=0 была заряжена положительно, в моменты времени T6,T4,T3,T2, где Т – период колебаний; б) значения силы тока в эти моменты времени.


Контрольные вопросы

 

1. Какие колебания называют электромагнитными? 

2. Что собой представляет колебательный контур? 

3. Чем обусловлено уменьшение электромагнитной энергии колебательного контура с течением времени?

4. Как связаны сила тока в колебательном контуре и заряд пластины конденсатора?

5. По какой формуле рассчитывают период гармонических колебаний в колебательном контуре?


Ответы

Упражнение 1

 

1. Увеличится в 2 раза. 

2. Уменьшится в 3 раза. 

3. 0,5 q00-0,5 q0; -q0-3π·q0T-2π·q0T;  -3π·q0T0.


 

Предыдущий урок
Электромагнитные волны. Принципы радиосвязи и телевидения
Электромагнитные колебания и волны
Следующий урок
Мощность в цепи переменного тока
Электромагнитные колебания и волны
  • Химическая технология. Производство аммиака и метанола

    Химия

  • Обособленные дополнения

    Русский язык

  • Факторы эволюции, закрепляющие изменения в генофонде популяций

    Биология

Зарегистрируйся, чтобы присоединиться к обсуждению урока

Добавьте свой отзыв об уроке, войдя на платфому или зарегистрировавшись.

Отзывы об уроке:
Пока никто не оставил отзыв об этом уроке